Structural Operational Semantics for Continuous State Probabilistic Processes
نویسندگان
چکیده
We consider the problem of modeling syntax and semantics of probabilistic processes with continuous states (e.g. with continuous data). Syntax and semantics of these systems can be defined as algebras and coalgebras of suitable endofunctors over Meas, the category of measurable spaces. In order to give a more concrete representation for these coalgebras, we present an SOS-like rule format which induces an abstract GSOS over Meas; this format is proved to yield a fully abstract universal semantics, for which behavioural equivalence is a congruence. To this end, we solve several problems. In particular, the format has to specify how to compose the semantics of processes (which basically are continuous state Markov processes). This is achieved by defining a language of measure terms, i.e., expressions specifically designed for describing probabilistic measures. Thus, the transition relation associates processes with measure terms. As an example application, we model a CCS-like calculus of processes placed in an Euclidean space. The approach we follow in this case can be readily adapted to other quantitative aspects, e.g. Quality of Service, physical and chemical parameters in biological systems, etc.
منابع مشابه
Compositionality of Probabilistic Hennessy-Milner Logic through Structural Operational Semantics
We present a method to decompose HML formulae for reactive probabilistic processes. This gives rise to a compositional modal proof system for the satisfaction relation of probabilistic process algebras. The satisfaction problem of a probabilistic HML formula for a process term is reduced to the question of whether its subterms satisfy a derived formula obtained via the operational semantics.
متن کاملDomain equations for probabilistic processes
In this paper we consider Milner’s calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We define operational notions of preorder and equivalence as probabilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing category-theoretic techniques for solv...
متن کاملSOS-based Modal Decomposition on Nondeterministic Probabilistic Processes
Abstract. We propose a method for the decomposition of modal formulae on processes with nondeterminism and probability with respect to Structural Operational Semantics. The purpose is to reduce the satisfaction problem of a formula for a process to verifying whether its subprocesses satisfy certain formulae obtained from the decomposition. To deal with the probabilistic behavior of processes, a...
متن کاملDomain Equations for Probabilistic Processes (extended Abstract)
In this paper we consider Milner's calculus CCS enriched by a probabilistic choice operator. The calculus is given operational semantics based on probabilistic transition systems. We deene operational notions of preorder and equivalence as prob-abilistic extensions of the simulation preorder and the bisimulation equivalence respectively. We extend existing category-theoretic techniques for solv...
متن کاملOperator Algebras and the Operational Semantics of Probabilistic Languages
We investigate the construction of linear operators representing the semantics of probabilistic programming languages expressed via probabilistic transition systems. Finite transition relations, corresponding to finite automata, can easily be represented by finite dimensional matrices; for the infinite case we need to consider an appropriate generalisation of matrix algebras. We argue that C∗-a...
متن کامل